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Abstract--A boundary integral method for determining the effective conductivity of a periodic array of 
spheres embedded in a conducting matrix is described. The method is independent of the multipole expansion 
methods previously applied to this problem. The effective conductivities of simple cubic, body-centered cubic, 
and face-centered cubic arrays of perfectly conducting spheres are calculated. The results verify those of 
multipoleexpansionmethodsanddemonstrate that boundaryintegral techniquesmaybesuccessfullyapplied 

to problems involving periodic arrays of spheres. 
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NOMENCLATURE 

set of unknown coefficients, equation 

(22) ; 
a function of y, equation (16); 
stiffness matrix, equation (24) ; 
volume concentration of spheres ; 
region within the sphere at the origin ; 
surface of the sphere at the origin ; 
matrix region within the unit cell at the 
origin ; 
surface flux, equation (14); 
a function of z, equation (32); 
overall temperature gradient ; 
the unit imaginary number ; 
nth spherical Bessel function of the first 
kind ; 
vector CI of the reciprocal lattice ; 
unit outward normal vector; 
number of unknowns; 
associated Legendre function of the first 
kind ; 
heat flux within the matrix; 
heat flux within the spheres ; 
overall heat flux ; 
position of sphere cc; 
fundamental singular solution ; 
temperature ; 
region within unit cell ; 
surface of unit cell ; 
forcing vector, equation (25) ; 
position vectors ; 
surface harmonic function of the first 
kind ; 
an arbitrary vector. 

Greek symbols 

Y> conductivity of spheres relative to 
matrix ; 

w, Dirac delta function ; 
e, axial angle ; 
K, effective conductivity relative to matrix ; 
7, volume of unit cell ; 

azimuthal angle ; 
basis functions, equation (22). 

1. INTRODUCTION 

THE PROBLEM ofcalculating the effective conductivity of 
a composite medium consisting of an array of spheres 
embedded in an isotropic matrix has been studied for 
many years. Rayleigh [l] was the first to offer a solution 
to this problem. His solution was later corrected by 
Runge [2] and improved by Meredith and Tobias [3]. 
Rayleigh’s method of dealing with a non-convergent 
sum was questioned by Levine [4] and Jeffrey [S], 
leading to further work by a number of researchers [& 
91. These studies all used Rayleigh’s basic technique of 
expressing the temperature field as a multipole 
expansion about each sphere; solutions accurate to 
higher concentrations of the spheres required higher 
ordered multipoles. O’Brien’s paper was unique in that 
it also offered a method for calculating the effective 
conductivity of a dilute random suspension of particles. 
Keller [lo] and Batchelor and O’Brien [ 11) have given 

asymptotic solutions for arrays in which the spheres 
were nearly touching. 

The most complete solutions to this problem to date 

are provided by McPhedran and McKenzie [7] for the 
case of simple cubic arrays and McKenzie et al. [S] for 
body-centered and face-centered cubic arrays (these 
two papers will be henceforth referred to collectively as 
McKenzie et al. [7, 81). Although their method of 
calculating the expansion coefficients for the body- 
centered and face-centered cubic arrays differs slightly 
from their method for the simple cubic case, McKenzie 
et al. [7, S] have used high-ordered multipole 
expansions for the temperature fields in all of their 
work. The purpose of this paper is not to improve upon 
the work of McKenzie et al. Rather, it will offer a new 
method of solution for this problem, a method which 
does not use multipole expansions for the temperature 
field. This new method will then be used to corroborate 
the results of McKenzie et al. [7, S]. 

The method of solution presented in this study is 
similar to the method employed by Zick and Homsy 
[12] to study Stokes flow through periodic arrays of 
spheres. Doubtless there are a number of other 
problems involving periodic arrays of spheres for which 
this method would also be useful. It is basically a 
boundary integral method. A periodic fundamental 
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singular solution to the problem is first attained. This 
fundamental solution is then used to transform the set 
of governing differential equations and their associated 
boundary conditions into an integral equation with the 

surface of a single sphere as its domain. A Galerkin 
technique is then used to solve the integral equation 
numericaiiy. 

The boundary integral method is used to calculate 
the effective conducti~ities of perfectly conducting 
spheres in simple cu bit. body-centered cubic, and face- 
centered cubic arrays at concentrations up to 955;, of 
the maximum concentration for each type ofarray. The 

results agree with, and thus confirm by an independent 
technique, those of McKenzie cr al. [7: 81. 

2. FORMULATION OF PROBLEM 

^ * 
JSJ [T(x)V2t(x, y)-t(X,y)V*T(x)] dx 

E 

Consider a homogeneous matrix with unit conduc- 

tivity surrounding a regular array of spheres having 
unit radius and conductivity 2:. It is desired to determine 
the overalt flux, Q, and hence the effective conductivi ty, 
ti, when a temperature gradient, G, is imposed on the 
lattice. Within the matrix 

” zzz JS [T(x)Vt(x, y)--t(x, y~VT(x)j.n dx 
i?r*- 

n 

4 [T(x)Vt(x, yf- r(x, y)VT(x)] an dx (11 i 
d r?D 

and 

q, = -VT, 

v.q,=o. 

Within the spheres 

q? = -;VT, 

V .q< = 0. 

Qn the surface of each sphere 

(11 

(3 

(3) 

(41 

zz [T(x)Vr(x,y)-r(x,y)V?‘(x)] *n dx. t 17) 

n-q, = “‘q& (3 

where nis the outward unit normal vector. Also, except 
for the overall temperaturegradient, the temperature is 
periodic, i.e. 

By adding equations (11) and ( 12) and making use of 

equations (1)410) it can be shown that 

“* 

7‘(y) = G-y+ 
ii 

r(x. J) I‘(x) dx iii! 
i ,in 

where 

7(x + r’) = T(x)+ G. r’. (6) 

Were r’ is the position vector of sphere z, r = 0, 1,2,. . , 
x8, with r” = 0. Finally, the temperature may be 
specified at one point; for simplicity we take 

shall be referred to as the surface tlux. 
By multiplying equation (12) by 7 and adding it to 

equation (11) it can similarly be shown that 

T(0) = 0. (71 

It is now assumed that each sphere within the lattice 

c 

/f(y)?‘(y) = G*y+(l--7) 
SJ 

n*Vt(x,y)T(x) dx 
i,, 

(15) 

is indistinguishable from any other sphere. Since the 
problem is periodic, it is only necessary to consider a 
single unit cell of the array. For simplicity, we choose 
the one which is centered at the origin and which fully 
encloses the sphere at the origin. We define this unit cell 
as U and the surface of U as ?U. Denoting the volume of 
the unit cell as r, we note that the volume concentration 
of spheres. c. is given by 

where 

Equations (13)-(16) now present the problem in 
integral form. The desired quantity. namely theeffective 
conductivity, IC, is given by 

The fundamental singular solution of this problem 
t(x,y), is the temperature field at position x due to an 
array of point sources centered at position y and it 

satisfies 

V*t(x:y) == -i -- i &(x-y r’i. 
1-o 

The solution to this equation which has zero mean 
within a unit cell is 

where k’is a non-zero reciprocal lattice vector [f 2. I 3-i. 
Define D to be the region within the sphere at the 

origin and i?LI to be the surface of that sphere. Then 
define E to be thematrixregion external to I) but within 
I/. With use of the divergence theorem. two integral 

relations can be written, 
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and In order to obtain the effective conductivity of the 
array of spheres it is necessary to solve equations (13t 
(16) for the unknown surface flux,f(x), and to then 
apply equation (17b). 

w=- 
ss 

G * Y MY) dy. (25) 
aD 

Restrict y to be on aD. Then equations (13H16) 
become two Fredholm integral equations, one of the 
second kind and one of the first, 

The effective conductivity is then given by 

1 
K=l+p lim i a.W.. 

zIGI ~+m j=l J ’ 

+ n*Vt(x,y)T(x) dx, ys~?D, (18) 

0 = G-y-T(y)+ ss r(x, y)f(x) dx, Y E aD. (19) 
aD 

In principal, equation (18) can be solved for T(y), 
y E aD, and then equation (19) can be solved forf(x). In 
practice however, equation (18) is difficult to solve 
unless the spheres are perfectly conducting, i.e. y = co. 
We will therefore limit ourselves to the case of perfectly 
conducting spheres. 

3. METHOD OF SOLUTION FOR 

PERFECTLY CONDUCTING INCLUSIONS 

In the case y = co, equation (18) reduces to 

T(y) = 0, yEaD 

giving the physically obvious result that as y + co the 
spheres become isothermal. Then equation (19) reduces 
to 

G-y= - 
ss 

t(x, YVM dx, Y E cm. (21) 
aD 

As shown by Zick and Homsy [12], integral 
equations such as equation (21) can be readily solved by 
a Galerkin technique. Let us expandf(x) as a linear 
combination of basis functions, c$~(x), which form a 
complete set over the domain aD. 

fCx) = 2 nj4j(x). (22) 
j=l 

P 
It can be shown that the set of coefficients, aj, is the 
solution to the system of linear algebraic equations 

F Aljaj = 4, 1 = 1,2,.. ., N (23) 
j=I 

where 

A,j = ss [ss t(x, yM,W dx 4,(y) dy, 
aD aD 1 

=A 5 IW2 ss ,-2rrika.y 

a-1 aD 

(244 

x MY) dy e2nikm.x+j(x) dx (24b) 
The effective conductivity was calculated for simple 

cubic, body-centered cubic, and face-centered cubic 
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(26) 

The basis functions appropriate for this problem are 

the surface harmonics of the first kind, 

Y36 4) = P,“(cos 0), m < n. (27) 

Since only isotropic arrays will be considered here, the 
overall temperature gradient, G, can be taken to be in 
the l-direction without loss of generality and it 
becomes necessary to consider only the surface 
harmonics of the form 

cos 2rn+Pir+ i (cos 0) (28) 

where the l-direction corresponds to 6 = 0. It is more 

convenient from a computational viewpoint, however, 
to recast the basis functions as follows : 

41(x) = Xl? 

u4 = $9 

h(x) = x,x:, 

44(x) = $3 

45(x) = x:x:, 

q5Jx) = x,x:, etc. 

(29) 

With these basis functions, all of the integrations 
required to evaluate A, and w can be performed 
analytically. It can be shown that for any vector z, 

eiz%{n4,n\ dx = 4~ 2 i i 
j=O.l k=O,l l=O,l 

P! 41 t! 

xj![(p-j)/23! k![(q-k)/2]! I![(t-1)/2]! 

where 1 indicates a summation over the values 
j=O,l 

and 

0,2,4 ,..., p for p even, 

1,3,5 ,..., p forpodd (31) 

FgP(z) = (i)z’(2z)-(“-“j,+,(z) (32) 

wherej,(z) is the nth spherical Bessel function ofthe first 
kind. 

4. RESULTS AND DISCUSSION 
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Table 1. Convergence of effective conductivities 

Packing SC BCC F-CC’ SC BCC I;(‘(’ 
Concentration 

Unknowns 0.200 0.300 0.400 0.500 0.650 0705 

I 1.750 2.2X6 3.000 4.00 6.S7 s.2 
3 1.756 2.290 3.01 I S.IX 7.35 X.6 
6 1.756 2.292 3.023 5.52 X.46 IO.4 

IO 2.292 3.023 5.73 x.74 1 I.’ 
15 3.023 5.x3 X.89 I i.7 
21 5.x5 8.94 1 I.: 
2X 5.86 4.97 11,: 
36 5.XX 8.95 I i 7 
45 5.86 x.93 1 I.? 
55 5X4 X.Y’ Ii 3 

arrays of perfectly conducting spheres with concent- 
rations up to 95”/;, of that at maximum packing. The 
number of unknowns, u,, was limited to 55 where each 
calculation required 5 min of CPU time on an IBM 
3033 computer. This number of unknowns corresponds 
to the surface flux approximation which makes use 
of all of the surface harmonics, Yir_ ,, with 
0 < m < n Q 9. Table 1 illustrates the convergence 
rates which were typical of the calculations, indicating 
the present results are convergent to better than I”,,. 

Presented in Table 2 are the effective conductivitiea 
computed in this study compared with those computed 
by McKenzie er al. 17, S]. The results presented here 
agree very well with those ofMcKenzie et nl. [7.8], thus 

confirming their results by an independent method. 
It was decided not to investigate the elective 

conductivities of arrays with concentrations greater 
than 95% of the maximum, as the convergence of the 
solution is slow near the maximum concentrations. At 
maximum concentration there is a singularity in the 
surface flux at the sphere-to-sphere contact points. 
Even at concentrations slightly below the maximum 
there are large peaks in the surface flux near the points 
where the spheres almost touch. Successful approxim- 
ation of these peaks requires a large number of basis 
functions and it was felt that extending the results to 
higher concentrations would not be worth the 

additional cost. especially since those results would 
probably be no more accurate than the results of 
McKenzie ef ul. [7, 81. 
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Table 2. Effective conductivities for cubic arrays of perfectly conducting sphere\ 

SC‘ array BCC array fc‘(‘ ‘1 rra> 

Present Previous Presen I Previous Present Previouh 

Concentration work results [7] work I-esuits 1x1 work results [R-j 

0.10 1.334 1.334 1.333 1.333 1.333 I .i.u 
0.20 1.756 1.756 I.751 I.751 I.751 I 750 
0.30 2.333 2.333 2.292 3.29’ 2.290 7.2YO 
0.40 3.262 3.261 3.035 3.035 3.023 3.023 
050 5.84 5.xX7 4.166 3.166 4.106 4.106 
0.5236 I 
0.60 0.329 6.33 I 5.96’) 5.972 
0.65 x.92 Y.026 
0.6802 I 
0.705 I I.3 1 I .4x 
0.7405 / 
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CONDUCTION THERMIQUE ENTRE DES ARRANGEMENTS PERIODIQUES DE 
SPHERES 

R&m-Une mkthode integrale est d&rite pour dtterminer la conductivitt effective d’un arrangement 
periodique de sphkres noyCes dans une matrice conductrice. La mtthode est indkpendante des m6thodes de 
developpement multipole pr&&demment appliquees i ce probltme. On calcule les conductivites effectives 
d’arrangements cubiques simples, cubiques centrts et cubiques B faces centrkes de spheres parfaitement 
conductrices. Les rtsultats virifient ceux des mtthodes de dtveloppement multipole et ils demontrent que les 
techniques intigrales limites peuvent .%re appliqukes avec sucds aux probltmes d’arrangements pkriodiques 

de spheres. 

W;IRMELEITUNG DURCH PERIODISCHE KUGELANORDNUNGEN 

Zusammenfassung-Ein Randwertintegrationsverfahren zur Bestimmung des effektiven WBrmeleit- 
vermdgens einer periodischen Kugelanordnung, die in einem leitenden Medium eingebettet ist, wird 
beschrieben. Das Verfahren ist unabhlngig von den Verfahren mit Multipol-Reihenentwicklung die 
friiher auf dieses Problem angewandt wurden. Das effektive LeitvermGgen von einfachen kubischen, kubisch 
raumzentrierten und kubisch fllchenzentrierten Anordnungen von ideal leitenden Kugeln wurde berechnet. 
Die Ergebnisse bestitigen jene der Multipol-Reihenentwicklungsvergahren und zeigen, dal3 
Randwertintegrationsverfahren erfolgreich fiir Probleme mit periodischen Kugelanordnungen angewendet 

werden kannen. 

IIEPEAAqA TEIIJIA TEIlJIOIIPOBO)JHOCTbIO B IIEPMOflM~ECKMX PEIIIETKAX C@EP 

.hlOTPUHR ~3+$eKTIiBHaH TCnJIOIIpOBOiIHOCTb IICpESOLWIeCKO~ peLUeTKEi C+ep B IIpOBOLUlluei? MaTpWe 

OnpenenSIeTCSl C IIOMOLUbH) HHTWpaJIbHOrO rpaHWIHOr0 MeTODa, He npRBJIeKa5I MyJIbTHIIOnbHOe 

pasnomesee, npaMennameecn paHee anx pememia 3~oii sanawi. PaccYeTana 3@eKTmHan Tennonpo- 

BOllHOCTb npOCTpaHCTBeHHO-UeHTpHpOBaHHbIX IIpOCTbIX B rpaHeL,eHTpElpOBaHHbIX Ky6WieCKSiX pe”IeTOK 

HL,ea,IbHO npOBO~,WWX C@p. Pe3,‘nbTaTbI paC’IeTa CXOIIKTCII C nOJIyWHHbIMB n0 MeTOny MyJIbTHnOJIb- 

HOrO pa3JIOxCHWI. TaKnM o6pa3oM, rpaHH’IHbIC BHTCrpanbHbIe MeTOAbI 3++eKTABHbI LlJIR peIIIeHWi 

3aL,a’I, CBI13aHHblX C nepHOL,WIeCKHMH CIiCTeMaMA C+ep. 


