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Abstract—A boundary integral method for determining the effective conductivity of a periodic array of

spheres embedded in a conducting matrix is described. The method is independent of the multipole expansion

methods previously applied to this problem. The effective conductivities of simple cubic, body-centered cubic,

and face-centered cubic arrays of perfectly conducting spheres are calculated. The results verify those of

multipole expansion methods and demonstrate that boundary integral techniques may be successfully applied
to problems involving periodic arrays of spheres.

NOMENCLATURE
a;, set of unknown coefficients, equation
(22);
A(y), a function of y, equation (16);
Ay, stiffness matrix, equation (24);

¢, volume concentration of spheres;

D, region within the sphere at the origin;

oD, surface of the sphere at the origin;

E, matrix region within the unit cell at the
origin;

f(x), surface flux, equation (14);

Fi(2), a function of z, equation (32);

G, overall temperature gradient;
the unit imaginary number;

Ja(2), nth spherical Bessel function of the first
kind ;

k2, vector a of the reciprocal lattice ;

n(x), unit outward normal vector;

N, number of unknowns;

Pi(2), associated Legendre function of the first
kind;

G (X), heat flux within the matrix ;

q.(x), heat flux within the spheres ;

Q, overall heat flux;

%, position of sphere o;

t(x,y), fundamental singular solution;

T(x), temperature;

U, region within unit cell;

ou, surface of unit cell;

W, forcing vector, equation (25);

X, ¥, position vectors;

Y(0,¢), surface harmonic function of the first
kind;

z, an arbitrary vector.

Greek symbols

s conductivity of spheres relative to
matrix ;

4(x), Dirac delta function;;

9, axial angle;

K, effective conductivity relative to matrix :

T, volume of unit cell ;

o, azimuthal angle;

@ ,(x), basis functions, equation (22).

1. INTRODUCTION

THE PROBLEM of calculating the effective conductivity of
a composite medium consisting of an array of spheres
embedded in an isotropic matrix has been studied for
many years. Rayleigh [ 1] was the first to offer a solution
to this problem. His solution was later corrected by
Runge [2] and improved by Meredith and Tobias [3].
Rayleigh’s method of dealing with a non-convergent
sum was questioned by Levine [4] and Jeffrey [5],
leading to further work by a number of researchers [ 6
9]. These studies all used Rayleigh’s basic technique of
expressing the temperature field as a multipole
expansion about each sphere; solutions accurate to
higher concentrations of the spheres required higher
ordered multipoles. O’Brien’s paper was unique in that
it also offered a method for calculating the effective
conductivity ofa dilute random suspension of particles.
Keller [ 10] and Batchelor and O’Brien [11] have given
asymptotic solutions for arrays in which the spheres
were nearly touching.

The most complete solutions to this problem to date
are provided by McPhedran and McKenzie [ 7] for the
case of simple cubic arrays and McKenzie et al. [8] for
body-centered and face-centered cubic arrays (these
two papers will be henceforth referred to collectively as
McKenzie et al. [7, 8]). Although their method of
calculating the expansion coefficients for the body-
centered and face-centered cubic arrays differs slightly
from their method for the simple cubic case, McKenzie
et al. [7, 8] have used high-ordered multipole
expansions for the temperature fields in all of their
work. The purpose of this paper is not to improve upon
the work of McKenzie ez al. Rather, it will offer a new
method of solution for this problem, a method which
does not use multipole expansions for the temperature
field. This new method will then be used to corroborate
the results of McKenzie et al. [7, 8].

The method of solution presented in this study is
similar to the method employed by Zick and Homsy
[12] to study Stokes flow through periodic arrays of
spheres. Doubtless there are a number of other
problems involving periodic arrays of spheres for which
this method would also be useful. It is basically a
boundary integral method. A periodic fundamental
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singular solution to the problem is first attained. This
fundamental solution is then used to transform the set
of governing differential equations and their associated
boundary conditions into an integral equation with the
surface of a single sphere as its domain. A Galerkin
technique is then used to solve the integral equation
numerically.

The boundary integral method is used to calculate
the effective conductivities of perfectly conducting
spheres in simple cubic, body-centered cubic, and face-
centered cubic arrays at concentrations up to 95% of
the maximum concentration for each type of array. The
results agree with, and thus confirm by an independent
technique, those of McKenzie et al. [7, 8].

2. FORMULATION OF PROBLEM

Consider a homogeneous matrix with unit conduc-
tivity surrounding a regular array of spheres having
unitradius and conductivity v. Itis desired to determine
the overall flux, Q, and hence the effective conductivity,
x, when a temperature gradient, G, is imposed on the

lattice. Within the matrix
g, = —VT, (1)
V-q, = 0. 2)
Within the spheres
q. = —VT, 3)
V-q. =0. {4)

On the surface of each sphere
ngq, =g (5
where nis the outward unit normal vector. Also, except
for the overall temperature gradient, the temperature is
periodic, i.e.
(6)
Here r* is the position vector of sphere o, & = 0, 1,2,...,
2, with r° = 0. Finally, the temperature may be
specified at one point; for simplicity we take

T(0) = 0.

Tx+1r) = Tx})+G-r*

(7
1t is now assumed that each sphere within the lattice
is indistinguishable from any other sphere. Since the
problem is periodic, it is only necessary to consider a
single unit cell of the array. For simplicity, we choose
the one which is centered at the origin and which fully
encloses the sphere at the origin. We define this unit cell
as U and the surface of U as 2U. Denoting the volume of
the unit cell as 7, we note that the volume concentration
of spheres, ¢, is given by
4n
=3 ®
The fundamental singular solution of this problem
t(x, v}, is the temperature field at position x due to an
array of point sources centered at position y and it

. LK

satisfies

l x
2t(X,y) = o Z X —y-—-T1%) {9y

20
The solution to this equation which has zero mean
within a unit cell is
& Cr vwieeix v
o e e | I e {1
4rct o
where k* is a non-zero reciprocal lattice vector [12, 137}
Define D to be the region within the sphere at the
origin and @D to be the surface of that sphere. Then
define E to be the matrix region external to D but within
U. With use of the divergence theorem, two integral
relations can be written,

»

J JJ [T(x)Vzt(x, }—t(x,y) W2T (x)] dx
E
= J‘( [TV, y)—t(x, y)VT{x)]'n dx
2L

- ” [TX)ViHx, y)— (%, ¥}V T{x}] - n dx
ap

o

and
J‘Jf [T)V2(x, ¥)— t{x, YIVET(x)] dx

B J j [T)VHX, Y) —t(x, yVT(x)]-n dx. 112}
an

By adding equations (11) and {12) and making use of
equations (1}-{10) it can be shown that

Ty} =G y+ fx. v} f{x) dx {13
JJdep
where
. £ )
.i(X)E(!-— “')qm(xrntx) (i4)
7

shall be referred to as the surface flux.
By multiplying equation (12) by 7 and adding it to
equation (11} it can similarly be shown that

ATy = G y+{1—3) ” n*Vix, ¥) Tix) dx
i
1t

Ly

3
H

where
3 1. yek,
Aly) =y ye D, (16}
l 1 +y), yecD.

Equations (13}(16) now present the problem in
integral form. The desired quantity. namely theeffective
conductivity, «, is given by

ZEVG_EGZE[[JJ GniX) dx+j“9qs(x) dx‘,
z}G J:( x f(x) dx.

(17a)

{17b)
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In order to obtain the effective conductivity of the
array of spheres it is necessary to solve equations (13)-
(16) for the unknown surface flux, f(x), and to then
apply equation (17b).

Restrict y to be on dD. Then equations (13)}16)
become two Fredholm integral equations, one of the
second kind and one of the first,

1+7y G- G-y
5( )() T
+JJ n° Vi(x,y)T(x) dx, yedD, (18)
éD

0=G-y—T(y)+” tx,y)f(x) dx, yedD. (19)
aD

In principal, equation (18) can be solved for T(y),
y€ 3D, and then equation (19) can be solved for f(x). In
practice however, equation (18) is difficult to solve
unless the spheres are perfectly conducting,ie.y = o
We will therefore limit ourselves to the case of perfectly
conducting spheres.

3. METHOD OF SOLUTION FOR
PERFECTLY CONDUCTING INCLUSIONS

In the case y = oo, equation (18) reduces to
T(y)=0, yedD (20

giving the physically obvious result that as y — oo the
spheres become isothermal. Then equation (19) reduces
to

—Jf tx,y)f(x)dx, yedD. (21)
)

As shown by Zick and Homsy [12], integral
equations such as equation(21) can be readily solved by
a Galerkin technique. Let us expand f(x) as a linear
combination of basis functions, ¢;(x), which form a
complete set over the domain D.

N

Y. a;pix).

Jj=1

Jx) = 22

It can be shown that the set of coefficients, a;, is the
solution to the system of linear algebraic equations

N
ZA,jj=W;, 1=12,....N (23)
j=1
where
Aljzf f [ J f t(x,y)¢,(X)dX}¢x(y)dy, (24a)
4n T ; o fo e
X ¢/y) dy J f "% (x) dx (24b)
aD
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and
W, = —H G-y ¢i(y) dy. 25)
oD
The effective conductivity is then given by
N
k=1+—— Lm Y a;W, (26)

IGP v /5

The basis functions appropriate for this problem are
the surface harmonics of the first kind,

¥7(0,6) = {;‘: :f

Since only isotropic arrays will be considered here, the
overall temperature gradient, G, can be taken to be in
the 1-direction without loss of generality and it
becomes necessary to consider only the surface
harmonics of the form

cos 2m¢pP3i™,  (cos 6)

Pi(cos ), m<n (27)

(28)

where the 1-direction corresponds to § = 0. It is more
convenient from a computational viewpoint, however,
to recast the basis functions as follows :

$1(x) = x4,
$2(x) = x3,
P3(x) = x,x3, 29)
ba(x) = xi,

¢5(x) = x?xga
Pde(X) = x,x3, etc.

With these basis functions, all of the integrations
required to evaluate 4,; and W, can be performed
analytically. It can be shown that for any vector z,

jf e ™nPnin, dx = 4n i i i
D i=0,1 k=0,1 1=0,1
« p! q! t!
S —j)2] k(g —k)/2]! I(e—1y2]!

k
212223
x PG FRratial) (30)
P

where Z indicates a summation over the values
j=0,1

0,2,4,...,p for p even,
= (31
1,3,5,...,p for p odd
and
32 = (*(22) " Y1 i2) (32)

where j,(z)is the nth spherical Bessel function of the first
kind.

4. RESULTS AND DISCUSSION

The effective conductivity was calculated for simple
cubic, body-centered cubic, and face-centered cubic
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Table 1. Convergence of effective conductivities
Packing SC BCC FCC S8SC BCC FCC
Concentration

Unknowns 0200 0.300 0400 0500 0650 0705

1 1.750 2286 3.000 400 657 82

3 1.756  2.290 3011 518 7.33 3.6

6 1.756 2292 3.023 552 846 104

10 2292 3023 573 874 112

15 3023 583 889 113

21 585 894 113

28 386 897 1.3

36 588 BYS 117

45 586 893 {13

55 584 892 113

arrave of nerfectlv conducting snh b eoncen
alla.y\ ul lJUllC )’ Ulllluubllllé b}l iCT CD Wllll \'Ullb\alll'

rations up to 95%, of that at maximum packing. The
number of unknowns, a;, was limited to 55 where each
calculation required 5 min of CPU time on an IBM
3033 computer. This number of unknowns corresponds
to the surface flux approximation which makes use
of all of the surface harmonics, Y37, with
0<m<n<9 Table 1 illustrates the convergence
rates which were typical of the calculations, indicating
the present results are convergent to better than 19,

Presented in Table 2 are the effective conductivities
computed in this study compared with those computed
by McKenzie et al. {7, 8]. The results presented here
agree very well with those of McKenzie et al. [ 7, 8], thus
confirming their results by an independent method.

It was decided not to investigate the effective
conductivities of arrays with concentrations greater
than 95% of the maximum, as the convergence of the
solution is slow near the maximum concentrations. At
maximum concentration there is a singularity in the
surface flux at the sphere-to-sphere contact points.
Even at concentrations slightly below the maximum
there are large peaks in the surface flux near the points
where the spheres almost touch. Successful approxim-
ation of these peaks requires a large number of basis
functions and it was felt that extending the results to
higher concentrations would not be worth the

. ZICK

additional cost. especially since those results would
probably be no more accurate than the results of
McKenzie et al. [7, 8].
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Table 2. Effective conductivities for cubic <1rrdy5 of pcricclly conducting sphcres

SC array
Present Previous

Concentration work results [7]

() 10 1.334 ] 334

0.20 1.756 1.756

0.30 2.333 2.333

0.40 3.262 3.261

0.50 5.84 5.887

0.5236 s

0.60

0.65

0.6802

0.705

0.7405

I (( array

B(C array
Present Previous Presernt Previous
work results [8] work results [8’}
1. ?%3 1.333 1.333 1.333
1.751 1,751 1.751 1.750
2292 2,292 2.290 2.290
3.035 3.035 3.023 3.023
4.166 4.166 4.106 4.106
6.339 6.341 5.969 S.972
8.92 9.026
i
1.3 11.48
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CONDUCTION THERMIQUE ENTRE DES ARRANGEMENTS PERIODIQUES DE
SPHERES

Résumé— Une méthode intégrale est décrite pour déterminer la conductivité effective d’'un arrangement

périodique de sphéres noyées dans une matrice conductrice. La méthode est indépendante des méthodes de

développement multipole précédemment appliquées a ce probléme. On calcule les conductivités effectives

d’arrangements cubiques simples, cubiques centrés et cubiques a faces centrées de sphéres parfaitement

conductrices. Les résultats vérifient ceux des méthodes de développement multipole et ils démontrent que les

techniques intégrales limites peuvent étre appliquées avec succeés aux problémes d’arrangements périodiques
de sphéres.

WARMELEITUNG DURCH PERIODISCHE KUGELANORDNUNGEN

Zusammenfassung—Ein Randwertintegrationsverfahren zur Bestimmung des effektiven Wirmeleit-
vermogens einer periodischen Kugelanordnung, die in einem leitenden Medium eingebettet ist, wird
beschrieben. Das Verfahren ist unabhingig von den Verfahren mit Multipol-Reihenentwicklung die
friher auf dieses Problem angewandt wurden. Das effektive Leitvermogen von einfachen kubischen, kubisch
raumzentrierten und kubisch flichenzentrierten Anordnungen von ideal leitenden Kugeln wurde berechnet.
Die FErgebnisse bestitigen jene der Multipol-Reihenentwicklungsvergahren und zeigen, daB
Randwertintegrationsverfahren erfolgreich fiir Probleme mit periodischen Kugelanordnungen angewendet
werden konnen.

MEPEJAYA TEIIJIA TENJOMPOBOJHOCTBIO B ITEPHOANYECKHUX PEHIETKAX COEP

AnHorauns — b ek THBHAA TEITONPOBOIHOCTh IEPHOAMYECKOM PellieTKH cep B MPOBOAALIEH MaTpHIle

onpedesieTcs C NOMOLIbI0 HHTEIPajbHOTO TPaHHYHOTO METOAd, HE NPHBJEKas MYJIbTHIOJIbHOE

pa3soxeHHe, MPUMCHABILECECS PaHee A1d PELICHUs 3ToM 3agayu. PaccunTtana sddexkTHBHas Temonpo-

BOXHOCTb MPOCTPAHCTBEHHO-IIEHTPUPOBAHHBIX MPOCTHIX U MPAHELIEHT PHPOBAHHBIX KYOHYECKHX PELIETOK

njeansHO npoBoaswMX chep. PesyabTaTsl pacyera cXoASTCS C MOJY4YEHHBIMH 1O METOAY MYJbTHIIONb-

HOTO padioxeHus. TakuM o6pa3oM, TpaHHYHbIE MHTErpajbHbIE METOAbl 3G(EeKTHBHL! JUI pELICHHS
3a/1a4, CBA3aHHBIX C IEPUOJMYECKNMH CHCTEMaMHU cdep.
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